**Boosting: Foundations and Algorithms**

by Robert E. Schapire, Yoav Freund

**Publisher**: The MIT Press 2014**ISBN-13**: 9780262310413**Number of pages**: 544

**Description**:

Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate 'rules of thumb'. A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry.

Download or read it online for free here:

**Read online**

(online html)

## Similar books

**Modeling Agents with Probabilistic Programs**

by

**Owain Evans, et al.**-

**AgentModels.org**

This book describes and implements models of rational agents for (PO)MDPs and Reinforcement Learning. One motivation is to create richer models of human planning, which capture human biases. The book assumes basic programming experience.

(

**1054**views)

**Algorithms for Reinforcement Learning**

by

**Csaba Szepesvari**-

**Morgan and Claypool Publishers**

We focus on those algorithms of reinforcement learning that build on the theory of dynamic programming. We give a comprehensive catalog of learning problems, describe the core ideas, followed by the discussion of their properties and limitations.

(

**2408**views)

**Elements of Causal Inference: Foundations and Learning Algorithms**

by

**J. Peters, D. Janzing, B. Schölkopf**-

**The MIT Press**

This book offers a self-contained and concise introduction to causal models and how to learn them from data. The book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from data ...

(

**459**views)

**Introduction To Machine Learning**

by

**Nils J Nilsson**

This book concentrates on the important ideas in machine learning, to give the reader sufficient preparation to make the extensive literature on machine learning accessible. The author surveys the important topics in machine learning circa 1996.

(

**16720**views)