Logo

Boosting: Foundations and Algorithms

Large book cover: Boosting: Foundations and Algorithms

Boosting: Foundations and Algorithms
by

Publisher: The MIT Press
ISBN-13: 9780262310413
Number of pages: 544

Description:
Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate 'rules of thumb'. A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry.

Home page url

Download or read it online for free here:
Read online
(online html)

Similar books

Book cover: Modeling Agents with Probabilistic ProgramsModeling Agents with Probabilistic Programs
by - AgentModels.org
This book describes and implements models of rational agents for (PO)MDPs and Reinforcement Learning. One motivation is to create richer models of human planning, which capture human biases. The book assumes basic programming experience.
(1054 views)
Book cover: Algorithms for Reinforcement LearningAlgorithms for Reinforcement Learning
by - Morgan and Claypool Publishers
We focus on those algorithms of reinforcement learning that build on the theory of dynamic programming. We give a comprehensive catalog of learning problems, describe the core ideas, followed by the discussion of their properties and limitations.
(2408 views)
Book cover: Elements of Causal Inference: Foundations and Learning AlgorithmsElements of Causal Inference: Foundations and Learning Algorithms
by - The MIT Press
This book offers a self-contained and concise introduction to causal models and how to learn them from data. The book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from data ...
(459 views)
Book cover: Introduction To Machine LearningIntroduction To Machine Learning
by
This book concentrates on the important ideas in machine learning, to give the reader sufficient preparation to make the extensive literature on machine learning accessible. The author surveys the important topics in machine learning circa 1996.
(16720 views)