Logo

A Course in Machine Learning

Small book cover: A Course in Machine Learning

A Course in Machine Learning
by

Publisher: ciml.info
Number of pages: 189

Description:
CIML is a set of introductory materials that covers most major aspects of modern machine learning (supervised learning, unsupervised learning, large margin methods, probabilistic modeling, learning theory, etc.). It's focus is on broad applications with a rigorous backbone.

Home page url

Download or read it online for free here:
Download link
(2.9MB, PDF)

Similar books

Book cover: Boosting: Foundations and AlgorithmsBoosting: Foundations and Algorithms
by - The MIT Press
Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate 'rules of thumb'. A remarkably rich theory has evolved around boosting, with connections to a range of topics.
(1133 views)
Book cover: Understanding Machine Learning: From Theory to AlgorithmsUnderstanding Machine Learning: From Theory to Algorithms
by - Cambridge University Press
This book introduces machine learning and the algorithmic paradigms it offers. It provides a theoretical account of the fundamentals underlying machine learning and mathematical derivations that transform these principles into practical algorithms.
(2346 views)
Book cover: A Survey of Statistical Network ModelsA Survey of Statistical Network Models
by - arXiv
We begin with the historical development of statistical network modeling and then we introduce some examples in the network literature. Our subsequent discussion focuses on prominent static and dynamic network models and their interconnections.
(2694 views)
Book cover: Information Theory, Inference, and Learning AlgorithmsInformation Theory, Inference, and Learning Algorithms
by - Cambridge University Press
A textbook on information theory, Bayesian inference and learning algorithms, useful for undergraduates and postgraduates students, and as a reference for researchers. Essential reading for students of electrical engineering and computer science.
(16213 views)